Homework 02

Professional Problem

Recall that I stands for the set of irrational numbers.

- (a) Show that if $a, b \in \mathbf{Q}$ then so are ab and a + b.
- (b) Show that if $a \in \mathbf{Q}$, $a \neq 0$ and $t \in \mathbf{I}$ then $at \in \mathbf{I}$ and $a + t \in \mathbf{I}$.
- (c) Part (a) can be said by *Q* is closed under addition and multiplication. Is I closed under addition or multiplication? Justify your answer.
 (Abbott, 1.4.1)

Written Problems

- 1. Let $A \subseteq \mathbf{R}$ be nonempty and bounded above, and let $c \in \mathbf{R}$. Define the set $cA = \{ca : a \in A\}$.
 - (a) If $c \ge 0$, show that $\sup(cA) = c \sup A$.
 - (b) What happens if c < 0? Make an analogous statement and prove it.
- 2. (a) If sup *A* < sup *B*, show that there exists an element *b* ∈ *B* that is an upper bound for *A*.
 (b) Give an example to show that this is not always the case if we only assume sup *A* ≤ sup *B*.
- 3. Prove that $\bigcap_{n=1}^{\infty}(0, 1/n) = \emptyset$.
- 4. Let a < b be real numbers and consider the set $T = \mathbf{Q} \cap [a, b]$. Show that $\sup T = b$.
- 5. Which of the following sets are dense in **R**? Take $p \in \mathbf{Z}$ and $q \in \mathbf{N}$ in every case.
 - (a) $\{p/q: q \le 10\}.$
 - (b) $\{p/q : q \text{ is a power of } 2\}.$
 - (c) $\{p/q: 10|p| \ge q\}.$
- 6. (a) Show that $(a, b) \sim \mathbf{R}$ for any interval (a, b).
 - (b) Show that an unbounded interval like $(a, \infty) = \{x : x > a\}$ has the same cardinality as **R** as well.
 - (c) Show that $[0,1) \sim (0,1)$ by exhibiting a one-to-one onto function between them.
- 7. (a) Why is $A \sim A$ for every set A?
 - (b) Given sets *A* and *B*, explain why $A \sim B$ if and only if $B \sim A$.
 - (c) Given sets *A*, *B* and *C*, show that if $A \sim B$ and $B \sim C$ then $A \sim C$. (Hence, \sim is an equivalence relation by (a)–(c).)

- 8. Let $S = \{(x, y) : 0 < x < 1, 0 < y < 1\}.$
 - (a) Find a one-to-one function that maps (0, 1) *into*, but not necessarily onto, S.
 - (b) Use the fact that every number has a decimal expansion to produce a one-to-one function that maps S into (0, 1). Discuss whether the formulated function is onto.
 - (c) How would you use your results to argue that $S \sim (0, 1)$?

Solutions

Professional Problem

(a) Let a = m/n and b = p/q, $m, n, p, q \in \mathbb{Z}$ and $n, q \neq 0$. Then

$$a+b=rac{m}{n}+rac{p}{q}=rac{mq+np}{nq} ext{ and } ab=rac{m}{n}\cdotrac{p}{q}=rac{mp}{nq}$$

are both rational because mq + np, mp, $nq \in \mathbb{Z}$ and $nq \neq 0$.

(b) $at \in I$: Assume the opposite, i.e. $at \in \mathbf{Q}$. Then a = m/n and at = p/q with $m, n, p, q \in \mathbf{Z}$ and $n, q \neq 0$. Also $m \neq 0$ because $a \neq 0$. Solve for t:

$$t = \frac{at}{a} = \frac{\frac{p}{q}}{\frac{m}{n}} = \frac{np}{mq}$$

which is rational. This is a contradiction.

 $a + t \in I$: Assume the opposite, i.e. $a + t \in \mathbf{Q}$. Then a = m/n and a + t = p/q with $m, n, p, q \in \mathbf{Z}$ and $n, q \neq 0$. Solve for t:

$$t = (a+t) - a = \frac{p}{q} - \frac{m}{n} = \frac{np - mq}{nq}$$

which is rational. This is a contradiction.

(c) *I* is NOT closed under addition or multiplication. Examples: $\sqrt{2}$ and $-\sqrt{2}$ are both irrational but $\sqrt{2} + (\sqrt{2}) = 0 \in \mathbf{Q}$ and $\sqrt{2} \cdot (-\sqrt{2}) = 2 \in \mathbf{Q}$.

Written Problems

(a) Denote the least upper bound by s = sup A. We wish to show that sup(cA) = cs. (Proof that cs is an upper bound). If s = sup A then for all a ∈ A, a ≤ s. Since c ≥ 0, c ⋅ a ≤ c ⋅ s. So cs is an upper bound of cA. (Proof that cs is least). Assume that cs is NOT the least upper bound of cA, then cA has another upper bound b, b < cs. Since b is an upper bound of cA, b ≥ ca for all a ∈ A, so b/c ≥ a for all a, which means b/c is an upper bound for A. This is a contradiction because b/c < s, which makes b/c an upper bound that is less than s, the least upper bound.

- (b) Denote the greatest upper bound by t = inf A. We wish to show that sup(cA) = ct.
 (Proof that ct is an upper bound). If t = inf A then for all a ∈ A, a ≥ t. Since c ≤ 0, c ⋅ a ≤ c ⋅ t. So ct is an upper bound of cA.
 (Proof that ct is *least*). Assume that ct is NOT the least upper bound of cA, then cA has another upper bound b, b < ct. Since b is an upper bound of cA, b ≥ ca for all a ∈ A, so b/c ≤ a for all a, which means b/c is a lower bound for A. This is a contradiction because b/c > t, which makes b/c a lower bound that is greater than t, the greatest lower bound.
- 2. Let $x = \sup A$ and $y = \sup B$.
 - (a) Consider y > x. By Lemma 1.3.8, for $\epsilon = \frac{y-x}{2}$ there exists $b \in B$ so that $b > y \epsilon = \frac{x+y}{2}$. Note that $y > \frac{x+y}{2} > x$. So $b > x = \sup A$. Therefore *b* is an upper bound of *A*.
 - (b) Consider $y \ge x$. When y = x we do not have the same conclusion as in (a). Counterexample: A = B = [0, 1].
- 3. It suffices to prove that *this set has no element*. Assume the opposite, that there is a number $x \in \bigcap_{n=1}^{\infty} (0, 1/n) = \emptyset$. Then $x \in (0, 1/n)$ for all $n \in \mathbb{N}$. This means x < 1/n for all $n \in \mathbb{N}$. This is a contradiction to the Archimedean Property which states that for any positive number x there is a positive integer n such that x > 1/n.
- 4. It is obvious that *b* is an upper bound. To show it is the *least*, consider any $\epsilon > 0$. By the density of rational numbers, there is always a rational number *r* between $b \epsilon$ and *b*. Since $r \in T$, by Lemma 1.3.8, $b = \sup T$.
- 5. (a) Not dense.
 - (b) Dense.
 - (c) $\frac{|p|}{q} \ge \frac{1}{10}$: not dense.
- 6. (a) Consider $f(x) = \frac{x \frac{a+b}{2}}{(x-a)(x-b)}$. (It suffices to demonstrate the graph and refer to horizontal line test.)
 - (b) It suffices to show that $(a, \infty) \sim (0, 1)$ because $(0, 1) \sim \mathbb{R}$. Proof: consider $f : (a, \infty) \to (0, 1)$, $f(x) = \frac{1}{x - a + 1}.$

$$x - a + 1$$

- (c) The easiest proof is to show that they are 1-to-1 *into* each other. $[0,1) \rightarrow (0,1)$: $f(x) = 0.1 + \frac{x}{2}$ is 1-to-1. $(0,10 \rightarrow [0,1)$: g(x) = x is 1-to-1. So $[0,1) \sim (0,1)$
- 7. (a) Consider $f : A \to A$, f(x) = x, is bijective.
 - (b) If $A \sim B$ then there is a bijection $f : A \to B$. Since f is bijective, it has an inverse function f^{-1} which is a bijection from B to A.
 - (c) If $A \sim B$ and $B \sim C$ then there are bijections $f : A \rightarrow B$ and $g : B \rightarrow C$. Then $g \circ f : A \rightarrow C$ is also a bijection. Therefore $A \sim C$.
- 8. (a) $f(x) = (x, 0.5), f: (0, 1) \to S$, is 1-to-1.

(b) Consider the decimal expressions $x = (0.x_1x_2x_3x_4\cdots)$ and $y = (0.y_1y_2y_3y_4\cdots)$. Let function $g: S \to (0, 1)$ be defined by

$$g(x,y) = (0.x_1y_1x_2y_2x_3y_3\cdots).$$

Then *g* is 1-to-1.

(c) $(0,1) \sim S$ because each one is 1-to-1 *into* the other.