Professional Problem

Recall that I stands for the set of irrational numbers.
(a) Show that if $a, b \in \mathbf{Q}$ then so are $a b$ and $a+b$.
(b) Show that if $a \in \mathbf{Q}, a \neq 0$ and $t \in \mathbf{I}$ then $a t \in \mathbf{I}$ and $a+t \in \mathbf{I}$.
(c) Part (a) can be said by Q is closed under addition and multiplication. Is I closed under addition or multiplication? Justify your answer.
(Abbott, 1.4.1)

Written Problems

1. Let $A \subseteq \mathbf{R}$ be nonempty and bounded above, and let $c \in \mathbf{R}$. Define the set $c A=\{c a: a \in A\}$.
(a) If $c \geq 0$, show that $\sup (c A)=c \sup A$.
(b) What happens if $c<0$? Make an analogous statement and prove it.
2. (a) If $\sup A<\sup B$, show that there exists an element $b \in B$ that is an upper bound for A.
(b) Give an example to show that this is not always the case if we only assume $\sup A \leq \sup B$.
3. Prove that $\bigcap_{n=1}^{\infty}(0,1 / n)=\emptyset$.
4. Let $a<b$ be real numbers and consider the set $T=\mathbf{Q} \cap[a, b]$. Show that $\sup T=b$.
5. Which of the following sets are dense in \mathbf{R} ? Take $p \in \mathbf{Z}$ and $q \in \mathbf{N}$ in every case.
(a) $\{p / q: q \leq 10\}$.
(b) $\{p / q: q$ is a power of 2$\}$.
(c) $\{p / q: 10|p| \geq q\}$.
6. (a) Show that $(a, b) \sim \mathbf{R}$ for any interval (a, b).
(b) Show that an unbounded interval like $(a, \infty)=\{x: x>a\}$ has the same cardinality as \mathbf{R} as well.
(c) Show that $[0,1) \sim(0,1)$ by exhibiting a one-to-one onto function between them.
7. (a) Why is $A \sim A$ for every set A ?
(b) Given sets A and B, explain why $A \sim B$ if and only if $B \sim A$.
(c) Given sets A, B and C, show that if $A \sim B$ and $B \sim C$ then $A \sim C$. (Hence, \sim is an equivalence relation by (a)-(c).)
8. Let $S=\{(x, y): 0<x<1,0<y<1\}$.
(a) Find a one-to-one function that maps $(0,1)$ into, but not necessarily onto, S.
(b) Use the fact that every number has a decimal expansion to produce a one-to-one function that maps S into $(0,1)$. Discuss whether the formulated function is onto.
(c) How would you use your results to argue that $S \sim(0,1)$?

Solutions

Professional Problem

(a) Let $a=m / n$ and $b=p / q, m, n, p, q \in \mathbf{Z}$ and $n, q \neq 0$. Then

$$
a+b=\frac{m}{n}+\frac{p}{q}=\frac{m q+n p}{n q} \text { and } a b=\frac{m}{n} \cdot \frac{p}{q}=\frac{m p}{n q}
$$

are both rational because $m q+n p, m p, n q \in \mathbf{Z}$ and $n q \neq 0$.
(b) at $\in I$: Assume the opposite, i.e. at $\in \mathbf{Q}$. Then $a=m / n$ and $a t=p / q$ with $m, n, p, q \in \mathbf{Z}$ and $n, q \neq 0$. Also $m \neq 0$ because $a \neq 0$. Solve for t :

$$
t=\frac{a t}{a}=\frac{\frac{p}{q}}{\frac{m}{n}}=\frac{n p}{m q}
$$

which is rational. This is a contradiction.
$a+t \in I$: Assume the opposite, i.e. $a+t \in \mathbf{Q}$. Then $a=m / n$ and $a+t=p / q$ with $m, n, p, q \in \mathbf{Z}$ and $n, q \neq 0$. Solve for t :

$$
t=(a+t)-a=\frac{p}{q}-\frac{m}{n}=\frac{n p-m q}{n q}
$$

which is rational. This is a contradiction.
(c) I is NOT closed under addition or multiplication.

Examples: $\sqrt{2}$ and $-\sqrt{2}$ are both irrational but $\sqrt{2}+(\sqrt{2})=0 \in \mathbf{Q}$ and $\sqrt{2} \cdot(-\sqrt{2})=2 \in \mathbf{Q}$.

Written Problems

1. (a) Denote the least upper bound by $s=\sup A$. We wish to show that $\sup (c A)=c s$. (Proof that $c s$ is an upper bound). If $s=\sup A$ then for all $a \in A, a \leq s$. Since $c \geq 0$, $c \cdot a \leq c \cdot s$. So $c s$ is an upper bound of $c A$.
(Proof that $c s$ is least). Assume that $c s$ is NOT the least upper bound of $c A$, then $c A$ has another upper bound $b, b<c s$. Since b is an upper bound of $c A, b \geq c a$ for all $a \in A$, so $b / c \geq a$ for all a, which means b / c is an upper bound for A. This is a contradiction because $b / c<s$, which makes b / c an upper bound that is less than s, the least upper bound.
(b) Denote the greatest upper bound by $t=\inf A$. We wish to show that $\sup (c A)=c t$. (Proof that $c t$ is an upper bound). If $t=\inf A$ then for all $a \in A, a \geq t$. Since $c \leq 0, c \cdot a \leq c \cdot t$. So $c t$ is an upper bound of $c A$.
(Proof that $c t$ is least). Assume that $c t$ is NOT the least upper bound of $c A$, then $c A$ has another upper bound $b, b<c t$. Since b is an upper bound of $c A, b \geq c a$ for all $a \in A$, so $b / c \leq a$ for all a, which means b / c is a lower bound for A. This is a contradiction because $b / c>t$, which makes b / c a lower bound that is greater than t, the greatest lower bound.
2. Let $x=\sup A$ and $y=\sup B$.
(a) Consider $y>x$. By Lemma 1.3.8, for $\epsilon=\frac{y-x}{2}$ there exists $b \in B$ so that $b>y-\epsilon=\frac{x+y}{2}$.

Note that $y>\frac{x+y}{2}>x$. So $b>x=\sup A$. Therefore b is an upper bound of A.
(b) Consider $y \geq x$. When $y=x$ we do not have the same conclusion as in (a).

Counterexample: $A=B=[0,1]$.
3. It suffices to prove that this set has no element. Assume the opposite, that there is a number $x \in$ $\bigcap_{n=1}^{\infty}(0,1 / n)=\emptyset$. Then $x \in(0,1 / n)$ for all $n \in \mathbf{N}$. This means $x<1 / n$ for all $n \in \mathbf{N}$. This is a contradiction to the Archimedean Property which states that for any positive number x there is a positive integer n such that $x>1 / n$.
4. It is obvious that b is an upper bound. To show it is the least, consider any $\epsilon>0$. By the density of rational numbers, there is always a rational number r between $b-\epsilon$ and b. Since $r \in T$, by Lemma 1.3.8, $b=\sup T$.
5. (a) Not dense.
(b) Dense.
(c) $\frac{|p|}{q} \geq \frac{1}{10}:$ not dense.
6. (a) Consider $f(x)=\frac{x-\frac{a+b}{2}}{(x-a)(x-b)}$. (It suffices to demonstrate the graph and refer to horizontal line test.)
(b) It suffices to show that $(a, \infty) \sim(0,1)$ because $(0,1) \sim \mathbf{R}$. Proof: consider $f:(a, \infty) \rightarrow(0,1)$, $f(x)=\frac{1}{x-a+1}$.
(c) The easiest proof is to show that they are 1-to-1 into each other. $[0,1) \rightarrow(0,1): f(x)=0.1+\frac{x}{2}$ is 1-to-1. $(0,10 \rightarrow[0,1): g(x)=x$ is 1-to-1. So $[0,1) \sim(0,1)$
7. (a) Consider $f: A \rightarrow A, f(x)=x$, is bijective.
(b) If $A \sim B$ then there is a bijection $f: A \rightarrow B$. Since f is bijective, it has an inverse function f^{-1} which is a bijection from B to A.
(c) If $A \sim B$ and $B \sim C$ then there are bijections $f: A \rightarrow B$ and $g: B \rightarrow C$. Then $g \circ f: A \rightarrow C$ is also a bijection. Therefore $A \sim C$.
8. (a) $f(x)=(x, 0.5), f:(0,1) \rightarrow S$, is 1-to-1.
(b) Consider the decimal expressions $x=\left(0 . x_{1} x_{2} x_{3} x_{4} \cdots\right)$ and $y=\left(0 . y_{1} y_{2} y_{3} y_{4} \cdots\right)$. Let function $g: S \rightarrow(0,1)$ be defined by

$$
g(x, y)=\left(0 . x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} \cdots\right) .
$$

Then g is 1-to-1.
(c) $(0,1) \sim S$ because each one is 1-to- 1 into the other.

